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Abstract

In this paper, the solution of classical and generalized linear and
nonlinear elliptic partial differential equations of the second order
with non-local boundary conditions is studied. The basic concepts
and theorems related to the study are included, which includes the
main result of this research. Many basic definitions, theorems and
observations about Sobolev spaces H*(Q) and HX(Q) are discus-
sed. The existence and uniqueness of the solution of the Poisson
equation with non-local boundary conditions are considered. The
existence and uniqueness of the solution of a second-order quasi-
linear elliptic differential equation with non-linear integral boun-
dary condition are also discussed. The argument for proving the
previous problem is based on Banach's fixed point theorem in the
complete metric space, the maxima and minima principle, and the
comparison principle.

Key word: Sobolev Spaces, Poisson Equation, Quesilinear Ellipitic
Differential Equation, Boundary, and Banach's fixed Point
Theorem.
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Introduction

This work presents results concerning second-order elliptic partial
differential equations defined over a domain 2 c R,,, with nonlocal
boundary conditions in the context of a Dirichlet problem. Unlike
the classical boundary value problem, where boundary conditions
establish relationships between the values of the unknown function
or its derivatives at the same boundary point, the nonlocal boundary
value problem introduces conditions linking the values of the
function or its derivatives at different points within 2~ .This
distinctive feature broadens the applicability of the problem and
poses unique analytical challenges. The study explores the
mathematical formulation, analysis, and potential solutions under
these nonlocal conditions, contributing to the theoretical

understanding and practical applications of such problems in
mathematical physics and engineering.

2 Copyright © ISTJ A gina bl (§ i
Ayl g o slell 40 sal) dlaall



http://www.doi.org/10.62341/akzg0717

International Scienceand ~ VOlume 37 ) gy gl iyl g

Imtrwaational beimrs mad Taviasiags demraal

ﬁ::ﬁﬁ{d‘ﬁ?m‘ Part 1 ) I S TIJ %

http://www.doi.org/10.62341/akzg0717

In [1] Carleman T. addressed the problem of finding a holomorphic
function that satisfies nonlocal boundary conditions. These
conditions establish a connection between the values of the
unknown function at a point t € dQ and another point a(t) €
d0Q where a(a(t)) = tand a(dQ) = Q.

In [2], Bitsadze A.V. and Samarskij A.A. studied the Laplace
equation with nonlocal boundary conditions. These conditions
prescribe a connection between the trace of an
unknown function on a manifold I'; € dQ and its trace on another
manifold T, € Q while imposing a first boundary condition on
OO\T;.

In [3], Chabrowski investigated a class of nonlocal problems
involving linear elliptic boundary conditions. Skubachevskij, in [4],
examined general linear elliptic equations of order 2nd under
generalized nonlocal boundary conditions. Nonlocal boundary
conditions for ordinary differential equations have also been studied
extensively, highlighting their importance in various applications.
Nonlinear elliptic equations with nonlocal and nonlinear boundary
conditions were explored by L. Simon in [5] and [6], and by .M.
Hassan in [7], [8], and [9]. Classical nonlocal and nonlinear first
boundary value problems for elliptic partial differential equations
were analyzed by .M. Hassan in [7].

The existence and uniqueness of the solution of the second-order
partial differential equations for foam are studied:
Au=f in 0 (@)
subject to the following new nonlocal boundary conditions:
u(x) = h(x)u(<15(x)) +¥(x); x € (2)
where 2 c R,, is a bounded domain, h is a continuous function on

00 satisfying sup | h 1< 1,and @:00 — 2~ is a continuous
mapping. We also address the existence and uniqueness of solutions
for the problem:

Q) = X7j=1 a;;(x,u,0u)0;0;u + b(x,u,0u) =0inQ  (3)
subject to the boundary condition:

u(x)=h(xu ((D(x)),x € dN (4)
where Q ¢ R " is a bounded domain, @ : 2 — £ is a continuous
mapping and h: 2 X R — R is continuous with d,h satisfying
sup sup|d,h| < 1.Finally, we establish the existence and
uniqueness of solutions for the equation:

Q) = Xij=1 a4 (x,u,0u)0;0;u + b(x,u,0u) =0 in Q@  (5)
with the nonlocal boundary condition:
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u(x) = hy (x,u(@(x)) + fan hy (x, t, u(¥ (t)) do on 9Q (6)
where O c R" is a bounded domain x = (x;, x5, .....,x,) €02
n > 2and u € C2(N). The coefficients a;;(x,z,p),(i,j =
1,...,n),b(x, z,p) are assumed to be real valued and defined for
all values of (x,z,p) in 2 xR xR™ , further a;; = a; .we
expect that the reader is familiar with topics in real analysis. we
provide two counterexamples illustrating that if the conditions
sup|h| < 1 and sup|d,h| < 1 are not satisfied, the nonlocal and
nonlinear first boundary value problem may lack a solution or admit
multiple solutions.

1.1 Background

We recall the following definitions:

Definition 1.1.1 [4] (Banach's fixed point) A fixed point of map-
pingT: X — X of aset X into itself an x € X which is mapped in
to itself(is " kept fixed" by T) that is, T,, = x, The image coincides
with x.

Theorem 1.1.2 [4] (Banach's fixed point) Consider a metric
space X = (X,d), where X # @. Suppose that is X complete and let
T: X — X be contraction on X. Then T has precisely one fixed point.
Theorem 1.1.3 [9] (Maximum Principle) Assume that 2 c R ™ be
a bounded domain and u € C(£2) is harmonic in 2 , If there exists a
point x, € 2 (inside ) such that Q is compact set , where u(x,) =
maxg u = supg u then u is constant . Except of this case u it has
its maximum only on the boundary.

Remark: Similarly the minimum principle can be formulated; that
islf3x, € 2:u(x,) = ming u then u is constant.

The Comparison Principle [9]: If Q is (a linear operator) satisfying
the hypotheses of the weak maximum principle (see [11]in page 32)
and if u,v € C(2) N C?(N) satisfy inequalities Qu > Qv in 2,
and u < v on dQ) we have immediately from corollary 3.2 in page
33in [11] that u < v ,this Comparison princ-iple has the following
extension to quasilinear operators .

Theorem 1.1.4 [9] Let Q be a bounded domain in R ™ satisfying an
exterior sphere condition at each point of the boundary 9Q , let Q
be a divergence structure operator with coefficients A* € C*(Q x
R xR™,i=1,.....n,BECY(QAXR xXR");

0 <y < 1, Satisfying the hypotheses of Theorem 15.8, together
with the hypotheses of theorem 10.9 for « = 7 + 2. Then, for any

4 Copyright © ISTJ A gina bl (§ i
Ayl g o slell 40 sal) dlaall


http://www.doi.org/10.62341/akzg0717

International Scienceand ~ VOlume 37 ) gy gl iyl g
Technology Journal Part 1 Aaall - “m

A58 g o slall 41 gal) Alaal) ISTJ}\Q

http://www.doi.org/10.62341/akzg0717

function ¢ € €°(9Q), there exists a solutionu € C°(Q) n C?(Q) of
the Dirichlet problem Qu =0inQ,u = ¢ onadQ.
Theorem 1.1.5 (Lagrange's Mean value) Let f be continues

function, such that Z—£ exists and bounded in Q. Then for all
(x,y1), (x,y, ) € Qthereexists I € R such that the following equa-
lity holds :

fOoy) —fxay2) = Z—i Xy + 12 —y0)- (1 — ¥2)

1.2 Some Results on Partial Differential Equations
Definition 1.2.1 [10] Let Qc R"™ be a domain(n < 2), and
F(X, ..., Pecr,.....cr - ) D€ @ given real function the points x belo-

gative indices oy, ... ... <, % =y,y=0,..,.mmz=1),
suppose that };i-; o¢; = m at least one of the derivatives OF _ of

Pxq,.sipy

the function F is different from zero. An equality of the from:

a’u

F (x, e ax:;n) —0 ()
is called a partial differential equation of order n , with respect to
the unknown function u(x) = u(x,, ...., x,),x € Q; the left hand
member of this equality is called a partial differential operator of the
m-th order . A real function u (x) defined in the domain Q , where
equation (7) considered, which turns the equation into an identity,
is called a regular solution of the equation.
Definition 1.2.2 [10] (linear Equations): Equation (1) is said to be
linear if F is linear function with respect to all variable
pml,.....,OCn(Z;;l Och =YY= 0 e, MM = 1)
Definition 1.2.3 [10] (quasi-linear Equations): Equation (7) is
said to be quasi-linear when F is linear with respect to the variable
Pocy ..oty only for Y, x; =m.

1.3 Classification of Partial Differential Equation
Some linear second order partial differential equations can be
classified as parabolic, hyperbolic or elliptic.

. . 2%u 9%u
1.3.1 Equation of second order [10] Assuming rdy — Fyax the

general second order partial differential equation in two independent
variables has the form:

0%u 0%u ou ou
AT+B%+CB_3/2+D@+E£+F“'—G
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where the coefficients A,B,C,D, E,F,G may depend on x and y.
This form is analogous to the equation for a conic section.

Ax?> + Bxy+Cy*+Dx+Ey+F =G
Just as one classifies conic sections into parabolic, hyperbolic and
elliptic based on the discriminate, B2 — 4AC, the same can be done
for a second-order partial differential equation at a given point.
i- B2 —4AC < 0 (Elliptic partial differential equation).
ii- B2 — 4AC = 0 (parabolic partial differential equation ).
iii- B2 — 4AC > 0 (hyperbolic partial differential equation).
If there are n independent variables x4, ..., x,, a general linear partial
differential equation of a second-order has the form

n 2%u n ou B
bj=14 gro t X Bt Cu=F  (8)
where 4; j, B;,C and F are real function of the variable point x €

Q.
Kk k
21 HY(Q) &H () Spaces.

In this chapter we shall introduce sobolve spaces of integer order
and establish some of their properties . We give some definitions
and theorems without proof ,the proof can be found in [12]and [13].
Definition 2.1.1 Let @ ¢ R™ be a bounded domain, K > 0 be an
integer. Consider the vector space of function, f € C*¥(2) define in
CX(), the scalar product given by the formula: < f,g >=
Y e Jo(0°)(0%g), f,g € C*(2) Then we obtain the
Euclidean space. The completion of this Euclidean space is called
HX (£2) (Sobolev space).

What does mean completion?

If we denote this Euclidean space by X, The completion of X is a
Hilbert space X, such that it has a dense subset £, which is
isomorphic to X. X = HX(2), Thus H¥() is a Hilbert space.
Theorem 2.1.2 The space HX(£2) is isomorphic to the space X,
of functions f € L?2(Q) such that df € H*(2) in distributional

sense if |a| < K there exist f; € C*(2) such that: lim||f — fi|| =
]—)OO 1
0, where inner product and ||. || in X; is defined by:

(f,9) = St <1 J,(0°F)(@%9), and; IF Il = {Syeerc [,10F 12}
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Definition 2.1.3 letQ c R™ be a bounded domain, K > 0 be an
integer, Consider the vector space of functions, (f]) ,f € C’g )

define in C*(2), the inner product given by the formula: < f,g >
= Y w<k Jo(0% £)(0%g), Then we obtain an Euclidean space. The

completion of this space is called) Soblove space, and donated
HE ().

Theorem 2.1.4 The H ’; (2) is isomorphic to X,, where X, is space
of function f e L2(Q), af € 12(Q) if |a] <k and there
exist (f;) , f; € C & (2) such that; jl,irgzo”f_jj-”xz = 0, where the

scalar product and ||. || is defined by:
<f,g>= %, 0,0% @D, and IIfll = . F)
Remarks 2.1.5 In the case k= 0, H°(2)=H () =1?(Q)
Later we shall see that for K > 0, H ’g (12) is a real subspace of
k
HY(@) , (H § () # HX(@)).

2.2 Some Properties of H*(2)and H ().

1- For all ¢ € C¥(2),f € HX(2) implice that of € H*(2) and
lof ) < C(@IIflnqy, @ is fixed, further if f €
HE(Q)implice that ¢of € HE(2), and ||g0f||H§(ﬂ) <
CONf Nl

2-Let0 <k <L, H*(2) c H*(Q) and H(2) c H ¥ (2), For all
f € H*(1);

If oy = 1f llkecay-

3- Assume 2 c (2, is a bounded domain of R™, Then forall k > 0
(integer), If feH Q)= fi, € H(Q) and, |Ifllyxq, =
£ Il oy, Because f € H(€,) means that f € L?(Q,),df € L*(124)
(for all a,lal <k), and there exist f; € C¥(2,) such that:
]lf?ollff ~ flly(ory =0 implies  that f;, € L*(2); 9°(fi,) €
L2(0), f € C¥Q) , ];iryo||]3.—f||Hkm) =0 f€ H’g(nl) # fi, €
HE (), Because g € C£(R) = g, € CL ().

4-Let Qc N, cR™ (bounded domain) and assume that f €
H'g(ﬂ) The extending fto Q; as 0 out of Q(f(x) =0 if x €
(Q:\Q), we obtain a function f € H’g(ﬂ) and, ||f||H§(Q) >
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Ayl g o slell 40 sal) dlaall


http://www.doi.org/10.62341/yasz1507

International Scienceand ~ Volume 37 ) B kI 50 e
Technology Journal Part 1 aaall - m

Akl g glall 4 gal) Al ISTJ}\Q

http://www.doi.org/10.62341/yasz1507

||f||Hkm), Because for g € C’g () to Q, if we extendgto Q; as 0
0

out of A then; g € C ¥ (24).

5-Assume that f € HX(), i.e. f € L’(R) and df € L*(R) if
la| < k, Define for ve> 0 , f, in the following way; fyx) =
o f ) ne(x — y)dy, x € 2, wheren, € C 7 (R"); Supp 7, C
B.,ne >0, [n, =1, Then for any Q,, Q2 € Q, we have

gl_z})”fa _f”ﬁk(g) = 0.

6- As consequence of (5) we obtain that if u € H¥(2) and u(x) =
0 a. e out of compact subset of Q , then; u € H’g(ﬂ),ue €
C % (Q) c CE(Q), for sufficiently small , lim [lu, = ullgrcq) =

0.
7- Assume that Q € R™ is a star like domain (bounded), i.e.
thereexistxo €Q : VO< A1
X — Xo

7 € Q} cQ
20 in sufficiently smooth (piecewise continuous differentiable), u €
C1(2),ulaq = 0 This is Implies that u € H ; ().

{xEQ:xo+

2.3 Equivalent Norms in H | ().
We know that in H (1) (©2) we can define two norms as following by:
% , %
£l = {12+ 5o f DY AN = {f, 2519, F 17}
Theorem 2.3.1 If Q c R™ is a bounded domain, then ||. || and ||. ||’
are equivalent norms in Hé(ﬂ), that is exist ¢ > 0 such that:
clf Il < IFI < NIf Nl forall f€H} ()
Proof : a)- ||fII" < |If]| is trivil to prove that c||f|| < |[f]l’, There
exist ¢; >0 suchthat: (1)- [ |fI* < ¢ fQZ’]=1|ajf|2 forall f €
H (), This is implies: [If1* = [ If| + [, X}o110jf1* <(c* +
D [, Xj=al0jf 12 = (' + DIfII
b)- Since Q is bounded , there exist an interval T = (a,, b;) X
(ay, by) X ... X (a,, by) In R™ such that Q. ¢ T. By using property
(@), extending function f € H 3 (Q) to T as 0 out of Q, we obtain
function feH (T) W sy = Wfllgrays W g2y =
||f||‘H$(mTherefor, instead of (a) it is sufficient to prove

@- [IfI2< [ 7-ol0;f|*,  forallf e H (T
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c)- Firstly we prove (b) for fe€C3(T) Noted, x =
(X1, 0o X0 ), x = (x1,x7), x = (x3,...,x,), By the notation
Laibainz form we have:

flxn,x) = fay,x) = [ 0 f(t,x)dt, f€CH(T), f(xn,x) =
IR
Implies that:
f )P = |50t f( 0t < (1 12de). 104 (¢, x)Pde =
(2 — @) [10:f (6202t < (= ar) J'192£ (8 x) 2dt.

| £ 12 = 11, £ Gen 20 |Pdic ey

< [0 [ = a0 [100f (& x0) 12t | dx Y dxy

< Dol g igifpz < Bl
where T" = (ay, by) X ... X (a,, by).
d)-We prove (2) for f € H j(T)we know that — f; € C;T)
jlirzlollfj — fllHé(T) =0, Byc, (2) in vcolid for f;.

JAfil? < e [ 30|0if].] = 0,Because  f; - fin  L*(T);

LIf12 [.20-010;f5]* 5 Because o;f; — ;t,~ L*(T)  Implies
2

that [ 1f1? < c1 [ X7-o|9;f ]

Remark 2.3.2 In H*(2) the above type of theorem is not true,

because for f,f(x) =1, Vx€n, we have; |Ifl>=[If|*+

noloif)? = f,1>0, But lflI*= [ ¥io|o;f|° =0, This
example shows also that H é(()), is a real subspace of H'(2)
because f € H'(Q), f & H ,(12).
Definition 2.3.3 [14] (Completely Continuous) The operator
A:H () — L*(2) is completely continuous if for all bounded

sequence (f;) € H ;(12), there exists sub a sequence (f;)* which
converges to L*(2).

2.4 Imbedding of H ; (2))and H'(£2) into L*(2).

Definition 2.4.1 The imbedding of Hé(!)) into L(Q2) is an
Operator A: H ; (2) - L?(R) such that; for all f € H j(), Af =
f € L2(0).

Theorem 2.4.2 Let Q c R" be a bounded domain then the
imbedding of H é(ﬂ) into L2(2) is a completely continuous
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operator, further if dQ is a piecewise continuous differentiable, then
the imbedding of H*(£2) into L*(£2) is also a completely continuous
operator.

Definition 2.4.3 Trace of function of H'(Q) The operator
L:H'(R) — L?(aN) is called the trace operator and for any f €
HY(2), Lf € L*(aN) is called the trace of f on 9.

Theorem 2.4.4 Assume that Q0 c R" is abounded domain, 9Q is
piecewise continuous differentiable, then there exist C > 0 such
that: [|fII? 20y = [y, |f1?do < C||f||2H1m)V f € C*(2) Consi-

der the following operator L such that: Lf =f, ., f € c'(),
Cleary, L a linear operator, further in virtue to above theorem we
know that L is bonded operator H*(£2), in to L*(£2), L is not defined
in whole H*(2) but in C*(£2) which is dense in H*(2)(C1(2) =
H'(2) then L can be uniquely extended to H*(£2) (the extension of
L) will be denoted by L such that; L': H*(2) — L?(d02), is a linear
and bounded operator.

Definition 2.4.5 The operator L:H'(2) — L?(R) is called the
trace operator and for any f € H'(), Lf € L?(dR) is called the
trace of f on 0Q.

Remark 2.4.6

1)-By the definition, if f € C*(2) then the trace of f(i. e.Lf)is
equal to the restriction of f on 9Q i.e f, ; Lf = flao Further
sequel we shall denote the trace of f (for arbitrary f € H*(Q2)) by

flaa
2)-The trace of H*(Q2) can be defined directly in the following

manner: Consider The sequence (f;) of function f; € C*(£2) such
that, lim||f; —f|| =~ =0 Consider the restriction of f; on
]—)OO 1_11(.(2

aﬂ(fjlaﬂ) . The sequence (fflag) is a Cauchy sequence in
L*(2), (L2(02) is complete); Its limit is the trace of £ on 9Q).

3-IffeH 3 () then forfa'!2 (the trace), f,, = 0. Fueled, using
(2)there exist  (fj)f; € Cé(ﬂ)-}i’z”ﬁ — f||Hém) =0, But
(fi,,) =0~ ]l_irzlo(fjlm) =0, in L?(Q) i.ef,,, =0, ltcan
be proved that the in true if £ € H _(2) and f},, = 0; implice

that f € H'(2). Assume 9Q is a piecewise continuous
differentiable, that is, for f € H'(Q),f,,, =

0 ifand only if fEH(l)(.Q).
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3.1 Nonlocal Elliptic First Boundary Value Problem.

The aim of this part is to prove existence of solution of second order
partial differential equations in a domain 0 ¢ R™ with the following
nonlocal boundary conditions:

u(x) = h(u(@()) +¥(x); x€an (1),
ulx) =h (x,u(q)(x))), x € 0.2 (2)

u(x) = hy(x,u(x)) + fhz (x, t,u(‘l’(x))) do,; x € 00 (3)

a0
and

8w = hy (2, u(0) + hy (x,u(®(0)) +

fyo hs (x, t,u('{’(t))) do, €90 (4).
where Q c R"is a bounded domain and @, Ware given continuous
mapping from 9Q in to Q.

3.2 Classical Nonlocal First Boundary Value Problem.
We shall prove the existence and uniqueness of the solution of
Poisson's equation with new non-local boundary condition (1), that
is, we prove the existence and uniqueness of the solution of second
order partial differential equation:

Au=fin Q, 5)
a)- h: is a given continuous function on the boundary dQ such that
sup|h| < 1 and @: 9Q — Q is a continuous mapping.
Definition 3.2.1 The classical nonlocal first boundary value
problem for the poisons equation is the following:
{ Au=fin Q (Au = }}-1 0;0,u) , (6)

u(x) = h(x)u(<15(x)) + Y(x), x € 0Q, (7)
C2(Q)nC)
Assume that f and 9Q are sufficiently smooth such that the solution
of the usual Dirichlet problem:
AV = finQ (8)
{V|aQ =¢ on 00 9)’
Exists for any arbitrary ¢ € C(3Q).
Theorem 3.2.2 Assume that the conditions (a) in equation (5) are
fulfilled, and then the classical nonlocal boundary value
problem (6), (7) has a unique solution.
Proof : Denote by G (¢) the unique solution V' of problem (8), (9)
for ther define an operator A by:

A(@)(x) = R()[G (P](P(x)) +p(x) ;x €09 (10)
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Then A:C(0Q) — C(0Q) is a nonlinear mapping, C(0Q) is a
contraction on the complete metric space.
p(@, ) = supsa e — @l (11)
If @ €C(0Q)fixed pointof A, i.e A(p) = ¢ ,Thenu = G(p) is
a solution of problem (6), (7). Conversely, if u is a solution of (2),
then: @ = u|yq is a fixed point of A. Therefore, to prove existence
and uniqueness of the solution for problem (6), (7), it is sufficient
to show that A has exactly one fixed point. This will be a
consequence of Banach's fixed point theorem [15]. New, we prove
that:A: C(9Q) — C(dQ) is a contraction on the complete metric
space c(01);
p(A(p)(x) — A(P)(x)) = suplA(p)(x) — A(P) ()| <
p.q (e, @) (12)

where g is anon-negative number. Since G (¢) — G({) isasolution
of the Laplace equation, then by maximum principle we find:

14(@)(x) — A(@) ()| = [h(x)[G (@) (@ (x) — G(@)(P(X))]| <
supaalhllle — @llca) (13)
Consequently;  sup|A(@)(x) — A(P) (x| < supaq ll¢ — Pl
i.e. |A(@)(x) = A(@))lcon) < 4-lp = Pllcany  (14)  where
q =sup|lh| <1. This is equivalent to equation (10):
p(A(p), A(@)) < q.p(p, @) which means that A is a contraction
on the complete metric space C(0Q), and this there exists a
unique ¢ € C(0Q) such that A(p) = ¢, thatis, u = G(¢) will be
the unique solution of (6), (7).
Remark 3.2.3 The condition (a) is not fulfilled then the non-local
boundary value problem may have no solution or it may have
several solutions.

3.3 Nonlocal first Boundary Value Problem For quasi-linear

partial differential equations:

We shall consider the of the from:

Q) = Xij=1a;(x,u,0u)d;0;u + b(x,u,0u) =0 in (15)
u(x) = h(x,u((D(x)), x € 0] (16)
where O < R" is a bounded domain.

b) @:00 — 0 is a continuous mapping h:02 XR—>R is a

continuous function with the property sup|d,h| <1 . We shall

prove existent and uniqueness of the solution problem (15),(16). Its

proved the following comparison principle (see Theorem 10.1 of

[16]. Let Q be a second order quasilinear elliptic operator defined

by the formula:
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Q) = Xij=1a;;(x,u,0u)d;0;u + b(x,u, du) ;where X =
(x1,X3, 00, X)) EQC R™,n > 2and u € C?(Q). The

coefficients (x,z,p),(i,j = 1,....,n), b(x,z p) are assumed to be
real valued and defined for all values of (x,z,p)in Q X R X R",
further a,; = a;;,Q is bounded.
Theorem 3.3.1 Let u,vC(Q)NC?*(Q) satisfy; Q(u) =
Q(v)in Q,u < v on 9Q, where;
i- The operator Q is elliptic;
ii- The coefficients a;;(x, z, p)are independent of z.
iii-  The coefficients b(x,y,p) is non-increasing in z for each
(x,p) €L c R™
Iv- The coefficients a;;, b are continuously differentiable with
respect to the variable p in Q x R X R™. Then it follows
that v, v in Q.
In [16] there are formulated conditions such that the Dirichlet
problem Q(u) =0 InQ.; u=¢ on Q. Has a solution u €
C2(Q) n c(Q) forany ¢ € C(9Q) see theorem 15.18 of [9].
Theorem3.3.2: Assume that the above conditions (i)—(iv) of
Theorem (3.3.1) are fulfilled with hypothesis of Theorem (15.18) of
[16] Then there exists a unique solution of problem (15), (16).
Proof 3: Denote by G(¢) the solutionu of the Dirichlet problem
Q(u) =0 inQ; u=¢ on Q. Define operator B by; B(¢)(x) :=
h(x,G(<p)(cD(x))), Then B: C(0Q) — C(dQ) is nonlinear mapp-

ing, where C(0Q) is a complete metric space with the metric
p(@1,9,) = suple,; — @,|. Itis easy to prove that if ¢ € C (0Q) is
afixed pointof Bi.e. B(¢) = ¢ ,thenu = G(¢) isasolution of
(15),(16), and conversely, if u is a solution of (15) (16), then ¢ :=
u|aq is a fixed point of B. Therefore to prove the existence of
(3.3.1), (3.3.2) it is sufficient to show that B has a fixed point. This
will be a consequence of Banach's fixed point theorem (see [4]).
Now we show that B: C(9Q) — C(9Q) is a contraction on C(9Q)
for any ¢4, @, € C(0Q),

9(3(401):3(‘.02)) = sup|B(¢,) — B(pz)| <

q-p(@1,92) (17),
Where q is a nonnegative number < 1. By We have [B(¢;)](x) —

[B(9)]1(x) = h[x,G(p)(@(x))] — h[x, G(p2)(@(x))]. Further,
by using Lagrange's mean value theorem and the notations. b; :=

G(p;)(@(x)) ,( = 1,2) We find that:
[B(@1)](x) — [B(92)](x) = 0,h(x,b; + Thy)(by — by)
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= 0,h(x,b; + sz)G((lh)(‘p(x)) - G(cpz)(d)(x))
Consequently,
[[B(¢1)]1(x) — [B(¢2)](x)]
= Sup|62h||G(<p1)(<D(x)) - G((pz)((b(x))|
We shall prove that: |G(p)(@(x)) — G(p) (@) <
p(@1,92); Where q = (sup|d,h| < 1 is satisfied , then we shall
have p(B(¢,) — B(¢,)) < qp(¢1, ¢2); This means that B is a
contraction in € (0€). By using the comparison principle A we want
to prove that for all y € Q;
|G (1)) — G(@2) (Y |supaal@r — @] (18)
For u, := G(p1) ,u, = G(¢p,) then we have: Q(u,) = Q(u,) =
0inQ ,uilga = @1 ,Uz|90 = @1, By using notation ¢:=
supgal@; — @, |we may write ¢, — e < @, < @, + ¢.
Consider the function u:=u, , vi=u;+¢ then: Q(u) =
Q) =0  and Q) Qwy +&) =X a;(x 0w +
€))0;(uy + €)9;(uy; + &) + b(x,u; + ¢, Iy +¢)) <
=0 ij (x, 0uy) (0;u1) (0ju1) + b(x,uy,0u;) = Q(uy) =0,
So we have: Q(v) =Q(u; +¢) <0=0Q(uy) =Q(w) in Q, i.e
Qw)<Qm)in Q@ and v=uy+e=@p;+e=@,=u, =
uondQ.
It means that all conditions of comparison principle are fulfilled, this
implies that u < v inQ, ie forall y € Q. u,(y) <u (y) +¢;
Similarly can proved that for all y € Q; u,(y) — ¢ < u,(y), thus:
lu,(¥) —u (¥)| < € = supgqle, — @21 ; Thus, we have shown
(18) complete the proof of the theorem.
Theorem 3.3.3 Assume that Q satisfies the conditions of theorem
(15.18) of [6] and @:0Q — 0Q are continuous mapping, h is a
continuous function with property sup|d,h| < 1, then there exists
a solution of the problem (15)(16) .
Proof : The proof of the Theorem 3.3.3. is similar to the proof of
Theorem 3.3.2. except of the proof of equation.(17) , If @:0Q —
00, ¥:00 - 0Q, then x € dQ implies that @(x) € 9Q, and so
Glp) (@) = 91(2(0)), G () (P(0)) = @,(@(x)),  And
thus: |G () (@(0)) — G(@)(P())| = |@1(P(x)) —
@2(®(0))| < p(e1, 92); So the proof can be continued in the way.
Remark 3.3.4 If the condition: (sup|d,h| < 1 ; is not fulfilled then

the nonlocal boundary value problem may have no solution or it may
have several solutions.
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4.1 Nonlinear Elliptic Equation  With Nonlinear Integral
Condition on The Boundary
Consider the following problem:

Q) = Xij=0a;j(x,u,0u)0;0;u + b(x,u,0u) =0in Q0  (19)
u(x) = hy (x,u(cb(x))) + [ he (x, t,u(lIJ(t))) on 9Q (20)

where @, ¥: 9Q — Q are continuous mapping and h; : dQ X R —
R,h, : 30X R? > R are continuous functions such that
|0,h4],]05h,| exist  with the property: [(sup|d,hq| +
A(0Q) sup|0dsh,|) < 1],A(9Q); is the measure of surface 9Q.

We shall prove existence and uniqueness of the solution of problem
(19),(20) by using argument of [7]. The main result of this paragraph
is following.

Theorem4.1.1 Assume that the above conditions (i)—(iv) of
Theorem 3.3.1 are fulfilled with hypothesis of Theorem (15.18) of
[16] Then there exists a unique solution of (19), (20).

Proof: Denote by G (¢) the solution of the Dirichlet proble: Q(u) =
0 inQ.;u=¢ on Q. further define operator B by; B(¢)(x) =

by (%, G () (@) + f, ha (.1, G (@) (¥(6)) doy Then
B:C(0Q) = €(9Q) is a nonlinear mapping, where C(9Q) is a
complete metric space with the metric p(¢4, @,) := sup|p; — @,|.
It is easy to prove that if ¢ € C (0Q) is a fixed point of
Bi.e. B(p) = ¢ ,then u:= G(¢p) is a solution of (3) (4 ), and
conversely, if u is a solution of (3), (4), then ¢ = u|yq is a fixed
point of B. Therefore to prove the existence of (3), (4) it is sufficient
to show that B has a fixed point. This will be a consequence of
Banach's fixed point theorem.

Now we show that B: C(9Q) — C(9Q) is a contraction on C(9Q)
for any ¢@q,¢9, € C(0Q), P(B(‘Pl),B(fpz)) = sup|B(¢,) —

Where: q := (sup|d,h,| + A(0Q).sup|d;h,| < 1; We have

[B(91)1(x) — [B(9)](x) = {hy[x, G(@) (P )] +
Jog hz[%t. G(@) (P (D)]doe} — {hi[x, G () (2(x))] -
faﬂ h,[%,t, G(@2) (P (1)]do}.
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Further, by using lagrange's mean value theorem and the notations.
aj = G(p;)(@(x)),b; = G(;)(¥()),( = 1,2); We find that:

[B(p1)](x) — [B(92)](x) = 92h1(x, a; + clay — az])(a; — a3)
+ [, 03h2(x,t, by + T [by — by](by — by)doy, Consequently,

[[B(¢1)](x) — [B(@)](x)]| < Sup|61h1||6(<p1)(<1>(x)) -
G(92)(P(X))| + supldi by . [, |G () (¥ (®)) —
G(p) (Y (D)|doy,

We shall prove that:

|G(p1)(@(x)) — G(p)(@(X))| < p(91, 92)
|G (P®) — Gl )(P®)| < p(@1, 92)

From these inequalities it follows:  p(B(¢p1),B(p,)) <
q.p (@1, 93), where: q = (sup|d,hi| +A(0Q).sup|d3h,|. This
means that B is a contraction in C(dQ). By using conditions of
theorem A we want to prove that for all y:=®(x) € Q;

|G (1)) — G(2) V)Isuple; — @,

Let u; == G(¢p;1) ,u, == G(¢p,), then we have Q(u,) = Q(u,) =
0inQ ,u; =@, ,u; = @, on dQ, We shall show that this
implies:  |u; () — ua (V)| < supgale: — @2l forally € Q. By
using notation & = supyq|@; — @, |we may write ¢, — e < @, <
¢, + e.Consider the function u:=u, , v:=u, + &.since;

(22)

Qus + &) = X7y aii(x,0(uy + €))0;(wy + €)9;(uy + &) +
b(x,uy +&d(uy +¢) < Xt =0 aij(x, 0uy) (0;u4) (juy) +
b(x,uq,0uy) = Q(uy) =0, Thus: Qw)=Qu,+e)<0=
Q(uy) = Q(u) in Q, Further: v=ute=@p,+e= @, =
u, =u ond Q. It means that all conditions of Theorem A are
fulfilled, thus u < v inQ, i.e for all y € Q. u,(y) < u;(y) + ¢,
Similarly can proved that forall y € Q: u,(y) — € < u,(y); And
so we have : |u, (y)—u,(y)| < €,Thus we have shown that:

|G (@(x)) — G(p)(P(x))| < suplp; — @2l = p(@1,92)
|G (@) — Gle) (P D) < suplos — @2l = p(p1,92)
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Hence we obtain which completes the proof of (Theorem 4.1.1).
Since the operator b has exactly one fixed point thus the solution of
(19), (20) is unique.

Theorem 4.1.2 Assume that Q satisfies the conditions of theorem
(15.18) of [16] and @, ¥: Q) — 01 are continuous mapping, h4, h,
satisfy the same conditions as in (Theorem 4.1.1), then there exists
a unique solution of (19), (20).

The proof of (Theorem 4.1.2) is similar to the proof of (Theorem
4.1.1) except of the proof of eq. (22), since; @:9Q0 — 0Q, ¥:00 -
90, thus for xe€dQ we have: G(p)(P(x)) =
P1(2(),G(p) (X)) = 2(2(x)), And  G(p)(¥(D)) =

P1(P(0),G(p2)(P(@®) = po(¥()) And so (22) is trivially
valid.

Remark 4.1.3 If the condition: (sup|d,hq| + A(0Q).sup|dsh,| <
1. Is not fulfilled then the nonlocal boundary value problem may
have no solution or it may have several solution see [7]. We shall
consider examples when the condition sup|d,h| < 1is not fulfilled
,we shall that , then the nonlocal boundary value problem may have
no solution or the solution may be not unique.

Example 4.1.4

Case(n = 1):
u”" =0 ,in(0,1), (23)
u(0) = aq u(a) + by, (24)
u(l) = a, u(B) + by, (25)

where a;, b; constants (j = 0) and a, 8 € [0,1], we know that all

solutions of (23) can be given by; u(x) = cx + d, This function
satisfies condition (24), (25) if and only if;

u(0) =d = agu(a) + by = ag(ca + d) + b,
u(l) =c+d= au(B)+ by =a,(c+d)+b,,

So, u satisfies condition (24), (25) if and only if ¢, d satisfy the
following system of equations; a,(ca +d)+ by =d, a,(c+
Bd) + b, = c+d, Thisis (apa)c + (ap — 1)d = —by; (a;8)c +
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(a; —1)d = —by, And the determinate of this system is;
Z(l)g 2(1) _ 1| =apa(a; — 1) — (ayp — 1)(a; — 1), We shall
that if the condition |a;| < 1 (j = 0,1), Is not fulfilled, then a, B €
[0,1] can be chose such that the determinate of the system will be 0,
in this case the system may have no solution or it may have an
infinite number of solutions.

Special cases

If a;=1,(G=01) then the determinate, ho(x,z) =z+
by , d,hy(z) =1, hy(x,z)=z4+b;, 0,h,(z) =1, For any
a,f €[0,1]. If ¢; > 1 (j = 0,1), In this case also o, € [0,1] can
be chosen such that the above determinate is 0. 8 = 1 , then the
determinate is Oe.g if aga(a; —1)=(ap—1(a;—1) , ie

ape = ap — 1 And so we obtain « :== 2= € (0,1)
Example 4.1.5
(case n = 2):
Au+cu=0 in By, c=<0, (26)

where By, == {x € R" : 1 < |x| < 2} and the boundary condition
on;

={xeRrR™|x|=j}, j=1.2

u(x) = pru(y1x) +6; ,x €5y, (27)
u(x) = Poulyzx) +6, ,x€S,, (28)
where; 1<y, <2 % <y, <1, Introduce polar

coordinates r,6 in R™ such that; x; = rcos@,x, = sin @, then

we have a new unknown function defined by: u(r,0) =

u(xy,x,) =u(rcosf,rsinb), Thus; Au (x1,x,) =

1[0 ou . . [2m

- E(r ar) (692)]( ,0), Define:  V(r)= [~ u(r, 29) de,
1[0 ( _ou a%u

Assume that is a solution of (26) we have, - [5 (r —) + - ( )] +

or 002
cu=0, Integrate both terms with respect to 9 on (0, 211) thus we

obtain fzm ( Z:) +- (692)] g +c “udo =0, This is
equivalent  to rar[ fZ"u( 6) de] += fZ"%dG +
18 Copyright © ISTJ Ak ghas poball (3 ia
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2 ,d6 = 0. Since; [7"2%q0 = [ = o, Th btai
cf, udf =0.Since; [ _ﬁ]o_’ us, we obtain

that the following ordinary differential equation for(V).

md%u _ [6u

“(V) +cV =0, or V42V +cV =0 (29)

Thus the solution of equation (29) can be written in the form, V =
d.V; +d,V,; dy,d, are constants, And the boundary condition for
V) is;

u(1,8) = pru(y,,0) + 64, u(2,0) = fou(y,,0) + 65,

Integrating these equations with respect to 6, we obtain;

2 2 2
Js "u(1,6)d6 = B Js "u(y,,0) do + 216y, Js "u(2,60)do =
B2 foznu(yz, 0)do + 2mé,, Thisis:

V(1) = p1V(y1) + 2méy, (30)

V(2) = B2V (y2) + 216, (31)

Thus, we have shown that if u is a solution of (30),(31), then V
satisfies (29) ,(30), (31). Now we show that constants f;,y; can be

chosen such that; 1 <vy; < 2, % <y, <L

And problem (29),(30) has no solution. From this it follows that also
(26),(27) has no solution. V is a solution of (30),(31) if and only if
d,, d, satisfy the following system of equations:

d V1 (1) + d,Vo(1) = BdiVi(ye) + B1do Vo (1) + 216y,

dV1(2) + d,V5(2) = Bod 1 Vi(y2) + B2d,Va(yv2) + 21y,

d, [Vi(D)=B1Vi(y)] + dx[V2 (1) + B1Va(y1)] = 216y,

d; [V1(2)=B2Vi(v2)] + d2[V2(2) + BV (v2)] = 216y,
And the determinate of this system is:

ViD=BVi(y) V(D) + B1Va(ye) (32)
Vi) =BVi(v2) V2(2) + BV (vl
Special cases: If 8, = 1,y; = 1 then the determinate (32) is 0, and
problem (30),(31),(32) may have no solution. In the last case
function u(x) are defined by:
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u(x)=u(r0) = iV(r), will be solution of (26), and thus for our

problem (26) we get several solutions. Let y,,y, and B, be chosen
such that;

B1lVa(r2)Va (v1) = Vi(r2)Va(r)] + Vi(y2)V2 (1)
—V(r2)Vi(1) # 0
Then we can be chosen such that the determinate (32) is equal to 0,
and this problem (26) will have no solution or it will have several
solutions.

Results

Nonlocal Boundary Conditions: The paper explores the Laplace
equation with nonlocal boundary conditions, establishing a
connection between the trace of an unknown function on a
manifold and its values at different points, which is crucial for
understanding the behavior of solutions in nonlocal settings.

e Sobolev Spaces: It discusses several basic definitions and
properties of Sobolev spaces, which are essential for analyzing
the solutions of partial differential equations. The paper
emphasizes the importance of these spaces in the context of
nonlocal boundary value problems.

o Existence and Uniqueness: The results include theorems that
address the existence and uniqueness of solutions for the
nonlocal elliptic boundary value problems, providing a
foundation for further research in this area.

« Trace Theorems: The research highlights the significance of trace
theorems, which relate to the behavior of functions at the
boundary, thereby facilitating the formulation of nonlocal
boundary conditions.

e Imbedding Theorems: The paper presents results on the
imbedding of function spaces, which are vital for ensuring that
solutions to the boundary value problems are well-defined and
can be effectively analyzed within the framework of Sobolev
spaces.

Conclusion

e This research stretched essential contributions to the adissection
of nonlocal boundary value problems for elliptic equations via
four point findings:
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e 1. Expounded the stringent role of nonlocal boundary conditions
in modeling complex physical systems.

e 2. Founded Sobolev spaces as the superior functional setting of
analytic solution.

e 3. Confirm strict existence and uniqueness theorems under
practical terms.

e 4. Developed novel depiction theorems joining boundary
conduct with solution estates.

Future research directions should focus on

e - Expanding outlooks to nonlinear and fractional operators.

e - Layout particular numeration methods.

e - Scouting implementations in preceding substances and
biological programs

These results exemplify fundamental proceeds in conception
nonlocal phenomena and supply worthy machines for researchers
in applied mathematics and physics. The evolved scope shows
new chances for analyzing complex systems through twofold
precisions.

Research Recommendations

e For Theoretical Expansion, We counsel expanding these
outlooks to nonlinear P-Laplacian operators, and it’s important
to study solution estates in fractional sobolev spaces.

e For Practical Applications, These outlooks can be stratified to
modeling nonlocal estates of intelligent substances.

Future Research Directions

e Examining unsettled (local/nonlocal) boundary value problems
is proposed.

e Conjunction this outlook with profound learning techniques
advantage scouting.
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